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DISTRIBUTED INJECTION OF A GAS INTO A HYPERSONIC FLOW 

I. I. Lipatov UDC 532.526 

Distributed surface injection of a gas is used to reduce heat flows to the surface of 
aircraft traveling at high supersonic velocities. The injection changes the effective form 
of the surface and can therefore be used to create aerodynamic forces and moments. The lat- 
ter case is characterized by velocities normal to the injection surface which are an order 
of magnitude greater than the vertical velocity in the boundary layer on an impermeable sur- 
face. Flow regimes with intensive injection have been studied in several investigations, a 
survey of which is offered in [i]. At the same time, for the goal of protection from heat- 
ing, it is optimum if the flow rate of the injected gas is comparable to the flow rate in the 
boundary layer on an impermeable surface, since the intensity of the injection ensures a 
reduction in heat flux in the dominant term. In this case, flow near the permeable surface 
is described by a system of boundary-layer equations. Hypersonic flows are characterized 
by the highest heat fluxes, and this is particularly true for the regime of strong hypersonic 
interaction. 

Studies of flows for this regime have been limited mainly to examining problems with 
boundary conditions, which provide for a reduction in the system of boundary-layer equations 
to a system of ordinary differential equations [2]. At the same time, the distribution of 
injection rate realized in practice makes it necessary to solve problems which are not self- 
similar. An example of the solution of such problems is given in the present study. 

There is yet one more circumstance which makes the study of flows with injection par- 
ticularly important. In classical boundary-layer theory, there are two types of singularities 
in the solution. These singularities are connected with the vanishing of skin friction and 
with alteration of the structure of the flow. In the first case, friction decreases to zero 
and a region of reverse currents is formed (the boundary layer separates) due to an unfavor- 
able pressure gradient. In the second case, distributed injection causes friction to vanish 
and a region of inviscid boundary flow to form (the boundary layer is detached). The struc- 
ture of flow in the boundary layer is determined by diffusion and convection associated with 
vorticity. At large Reynolds numbers, the distance over which the vorticity diffuses from 
the solid surface is much less than the distance over which the vorticity is transported 
along the surface by convection [3]. Stagnation of the fluid under the influence of an un- 
favorable pressure gradient leads to development of the convective mechanism of vorticity 
transport from the surface and to restructuring of the flow in the boundary layer. Such con- 
vection also develops as a result of surface injection. The solutions of the system of bound- 
ary-layer equations near points of zero friction were described mathematically in [4, 5]. 
Analysis of these solutions showed that a large unfavorable pressure gradient, induced by the 
displacement thickness in the external flow, develops in the vicinity of points of zero skin 
friction. By allowing for the interaction of the boundary-layer flow with the external flow, 
it was possible for investigators to obtain a smooth solution which passed through the sepa- 
ration point in supersonic [6, 7] and subsonic [8] flows. It later turned out that allowing 
for an induced pressure gradient in acomposite system of boundary-layer equations makes it 
possible to also eliminate the singularity for the solution which describes flow with dis- 
tributed injection [9]. The solution obtained in [9] corresponded to the regime of weak in- 
teraction, and the induced pressure gradient began to have an appreciable effect only after 
skin friction was reduced to nearly zero. The strong interaction regime is characterized by 
the fact that the boundary-layer flow and the inviscid external flow influence each other 
along the entire surface of the body. Thus, if it exists at all, the phenomenon of boundary- 
layer detachment should have several features which will distinguish it from the analogous 
phenomenon in the weak interaction regime. It is the analysis of these features which is the 
focus of this article. 
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I. We are examining the hypersonic flow of a viscous, heat-conducting gas about a plane 
surface. The origin of the Cartesian coordinate system coincides with the leading edge. The 
axis xs is directed along the surface, while the axis ys is directed normal to the surface 
(Fig. I). In accordance with [i0], the regime of strong interaction is realized at 

M , ~  oo, MooT~  oo, 

where M~ is the Math number in the undisturbed flow; ~ is the thickness of the boundary layer 
6 * referred to the length of the surface s In conformity with the usual estimates of the 
theory of strong interaction in a boundary layer (region 2 in Fig. i), we introduce the fol- 
lowing notation for the components of the velocity vector, density, pressure, total enthalpy, 
and absolute viscosity: ur "~2p~pi,. ~p| (ul/2)g~,- ~0~l. Here, the subscript 
denotes parameters of the undisturbed incoming flow, while the subscript 0 pertains to the 
viscosity coefficient corresponding to the stagnation temperature. The parameter T, char- 
acterizing the thickness of the boundary layer, is expressed through the Reynolds number 

= Re~ i/4, Re 0 = p~u~s 0. It is assumed that the surface of the plate is permeable and 
that the gas injected along a normal to the plate is of the same composition as the gas in 
the incoming flow. The velocity of the gas is equal to Tu~v w. 

The system of equations of the boundary layer, written in Dorodnitsyn variables, has the 
form 
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~ml  = ( y _  ~ p~ (g~ - ~)~-~, ~ (x, 0) = 0, 
$ 

g~ (x, 0) = g~, v~ (x, 0) = v~p~,  u~ (x, ~o) = 1, g~ (x, ~ )  = 1 

(o i s  t h e  P r a n d t l  number) .  

In accordance  w i th  t he  t h e o r y  of  s t r o n g  i n t e r a c t i o n  [10] ,  t he  p r e s s u r e  d i s t r i b u t i o n  
p i ( x )  which goes i n t o  t h e  bounda ry -va lue  problem depends on t he  d i s p l a c e m e n t  t h i c k n e s s  of  the  
boundary l a y e r  6z. To de te rmine  t h i s  dependence ,  i t  i s  n e c e s s a r y  to  s t udy  the  i n v i s c i d  f low 
in  r e g i o n  1 ( s e e  F ig .  1) ,  l o c a t e d  between the  shock wave and the  e x t e r n a l  boundary of  the  
boundary l a y e r .  The f low in  r e g i o n  1 i s  d e s c r i b e d  by t he  h y p e r s o n i c  t h e o r y  of  smal l  pe r -  
t u r b a t i o n s  [11] .  We w i l l  u se  t he  f o l l o w i n g  approximate  e x p r e s s i o n  f o r  subsequen t  a n a l y s i s  

P~ = T \~-E] ' ( i .  2) 

this expression being given by the shear-wedge method. 

The substitution of variables ~ = x I14, % = ~-i[(y _ 1)]Syp(O)]i12, ux = O~]O~l, v*i = --O~p/Ox, ~ -~- 
~][8~p(0)/(y- I)] i/~, Pi = ~-2p, Pi = ~-2p, 61 = ~s~, gi = g reduces boundary-value problem (i.i)- 
(1.2) to the form 
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The pressure distribution p(~) in (1.3) is unknown beforehand and is found during the solu- 
tion of the problem. The presence of the induced pressure gradient imparts new properties 
to the solution of the parabolic system of boundary-layer equations. These properties are 
related to the transfer of disturbances upflow or to the dependence on the boundary condi- 
tion assigned downflow [12]. For example, the auxiliary boundary condition assigned on the 
bottom edge p($ = i) = B makes it possible to obtain a unique solution for boundary-value 
problem (1.3). Efficient difference schemes have been developed to numerically solve bound- 
ary-value problems of this type, and we will use the method in [13] here. The procedure for 
obtaining the solution involves assigning a certain velocity and pressure field in the region 
(0~i; 0~_~< oo). Linearized boundary-value problem (1.3) is subsequently solved with 
a known pressure gradient and known distributions of pressure and displacement thickness 
6i($). As a result, we find a new distribution of the displacement thickness 6(~) which 
differs from the original distribution 6i($). The next stage of calculation involves find- 
ing the correction A($) for the displacement thickness distribution. We do this through 
the use of a linear second-order differential equation in which the inhomogeneous term is 
proportional to the difference 6i(~) - 6($). The calculational procedure is repeated with 
a new displacement thickness distribution 8 i+I = 6 i + A and the corresponding distributions 
of pressure and pressure gradient until the difference 8 i+l - 6 i becomes sufficiently small. 
Thus, it is also possible to calculate flow in a boundary layer with reverse currents by 
using approximate differences in the approximation of the convective derivatives. 

2. Numerical solutions of boundary-value problem (1.3) were obtained with o = n = I 
and 7 = 1.4. Figure 2 shows results of calculations of the function p($) which correspond 
to a fixed value of the parameter B = 1.02 (proportional to the bottom pressure gradient) 
and several values of the parameter Vw, proportional to the sonic velocity. The solid curves 
correspond to the temperature factor gw = i, while the dashed lines correspond to gw = 0.5. 
We should point out the qualitative difference between the solutions corresponding to flow 
about impermeable and permeable surfaces. The first solution (v w = 0) is characterized by 
constancy of the function p($) nearly everywhere, except for the region adjacent to the bot- 
tom edge ($ = i). The second type of solution (v w ~ 0) is characterized by regions of rapid 
increase near the leading edge and nearly constant values and changes in the vicinity of the 
bottom edge. In the region of nearly constant values, the function p depends only slightly 
on the injection rate and is determined by the temperature factor. A reduction in gw in 
this region is accompanied by a reduction in the maximum of p($). It is understood that 
these conclusions pertain only to the investigated range of the bottom pressure gradient, 
in which the flow does not contain any regions of reverse currents. 

Figure 3 shows results of study of the effect of B on the characteristics of the flow. 
Here, the function p($) was obtained with v w = i, gw = i. It should be noted that, with a 
change in B, the value of p($) changes only near the bottom edge. It was shown in [ii] that 
the solution of boundary-value problem (1.3) written (for example) for p($) can at g § 0 be 
written in the form of a series containing an eigenfunction of the form C$ a, where a is the 
eigenvalue and the constant C is determined by the condition p($ = I) = B. The study of 
flows with injection given by the condition fw($) = -F in [14] showed that an increase in F 
leads to a reduction in a. Accordingly, there is an increase in the rate of transfer of dis- 
turbances upflow; in particular, with a fixed value of bottom pressure gradient, pressure 
increases at any point near the leading edge. The slight dependence of the solution on the 
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bottom pressure gradient (Fig. 3) can be attributed to the fact that, at ~ + 0, the injec- 
tion regime being studied, v w = const or fw(~) = 0(6), is characterized by an appreciably 
lower injection velocity near the leading edge than the regime corresponding to the condi- 
tion fw = const. 

The results of the calculations allow us to conclude that a region of reverse flows (or 
a change in the sign of skin friction with an increase in the parameter B) is first seen near 
the bottom edge, i.e., at ~ = i. To explain this fact, we need to return to the definition 
of the function p(~). This function is the ratio of the pressure distribution to the simi- 
larity distribution that corresponds to flow about a semi-infinite impermeable surface. The 
pressure distributions pl(x), expressed in similarity variables, are shown in Fig. 4 [curve 2 
corresponds to the similarity solution (v w = 0, gw = i), while curve 1 was obtained with the 
same: value of the temperature factor and v w = i]. It can be seen that the pressure distri- 
butions are monotonic and correspond to a negative pressure gradient over the entire surface 
of the body. An increase in B leads to a change in the pressure distribution near the lead- 
ing edge. Specifically, it leads to the appearance of zero or negative skin friction asso- 
ciated with a change in the sign of the pressure gradient at ~ = i. 

Comparing our results with the results of study of a flow with uniformly distributed 
injection for the regime of weak interaction [9], it can be noted that the strong-interaction 
regime is characterized by a shift in the region of pressure increase (positive pressure 
gradient) toward the bottom edge. 

Figure 5 shows results of calculations of the function f~(~). Here, as for p(~) (see 
Fig. 2), we can distinguish three characteristic regions: rapid reduction in the function 
fw(~) near the leadlng edge, near-constant low values, and changes near the bottom edge. A 
similar pattern is obtained from calculations of gw(~) at gw = 0.5 (Fig. 6). The existence 
of three characteristic regions in the flow near the porous surface is related to the dif- 
ferent effects of diffusion, convection, and the external forces (pressure gradient) on flow 
in these regions. An increase in the thickness of the boundary layer (the distance from the 
zero streamline to the surface) is accompanied by a reduction in the effect of viscous forces 
on longitudinal momentum in the boundary-flow region. Here, the longitudinal momentum of a 
gas injected normal to the surface is increasingly acquired as a result of a favorable pres- 
sure gradient. Although the skin friction created by acceleration of the gas also decreases 
with an increase in injection rate, the rate of decay of friction due to viscosity turns out 
to be higher. This situation leads to the appearance of the characteristic regions in the 
flow. The existence of the third region is, as noted above, connected with the effect of 
the bottom pressure Rradient. 
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EFFECT OF RAREFACTION AND THE TEMPERATURE FACTOR ON THE STRUCTURE 

AND PARAMETERS OF SUPERSONIC UNDEREXPANDED JETS OF A MONATOMIC GAS 

V. Ao Ivanov, G. A. Luk'yanov, 
and I. V. Shatalov 

UDC 533.6.011.8 

The pattern of flow in an underexpanded supersonic jet discharged into a submerged space 
is determined in the general case by several dimensionless parameters which characterize con- 
ditions on the edge of the nozzle and in the surrounding medium. If we limit ourselves to 
the discharge of a monatomic gas from a sonic nozzle into the same gas, then the number of 
governing parameters is reduced to three - the characteristic Reynolds number Re L = Re,/N ~ 
the degree of expansion N = P0/P~, and the temperature factor ~ = T0/T~, where Re, is the 
Reynolds number calculated from the parameters in the critical section of the nozzle, P0 
and T o are the stagnation temperature and pressure, and p~ and T~ are the ambient pressure 
and temperature [i]. 

At Re L > 102 , a continuous flow regime is realized. Here, the effect of viscosity and 
the temperature factor on flow in the initial section of the jet is restricted to the outer 
mixing zone. An inviscid core with a shock-wave structure (SWS), including suspended and 
central shocks, is preserved inside the jet. Meanwhile, the suspended shock and the mixing 
layer are separated from each other by a zone of inviscid flow. Values of Re L < 102 corre- 
spond to flow regimes characterized by merging of the shock zones, the compressed layers, 
and the mixing layers. With a decrease in ReL, the effect of viscosity and the temperature 
factor increases and propagates upflow [1-4]. 

The study [2] examined the effect of the temperature factor on the flow pattern and 
structure of an underexpanded argon jet discharged from a sonic nozzle into a submerged 
space. Here, Re L = 103-3, ~ = 1-18, and N = 370-28,500. As the initial data, the authors 
used the density field obtained from electron -x-ray method. In the analysis of the experi- 
ments, most attention was paid to the range Re L = 10~-30. 

In the present investigation, the ranges studied are expanded in the direction of 
smaller Re L and large �9 (Re L = 0.5-102 , ~ = 1-38). Based on analysis of results obtained 
for underexpanded argon jets at N > 102 in these ranges of Re L and ~, we discerned two char- 
acteristic subregions in the transient flow regime, with eroded and completely degenerate 
SWS's. We also observed a region of flow regimes in which density decreases monotonically. 
This region can be regarded as intermediate between the transient regime and the free-molec- 
ular regime. We studied the effect of Re L and ~ on the structure and characteristic geometric 
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